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Abstract. The two dimensional crossover from independent particle towards collective motion is studied
using 2 polarized electrons (spinless fermions) interacting via a U/r Coulomb repulsion in a L × L square
lattice with periodic boundary conditions and nearest neighbor hopping t. Three regimes characterize
the ground state when U/t increases. Firstly, when the fluctuation ∆r of the spacing r between the two
particles is larger than the lattice spacing a, there is a scaling length L0 =

√
8π2(t/U) such that the relative

fluctuation ∆r/〈r〉 is a universal function of the dimensionless ratio L/L0, up to finite size corrections of
order L−2. L < L0 and L > L0 are respectively the limits of the free particle Fermi motion and of the
correlated motion of a Wigner molecule. Secondly, when U/t exceeds a threshold U∗(L)/t, ∆r becomes
smaller than a, giving rise to a correlated lattice regime where the previous scaling breaks down and
analytical expansions in powers of t/U become valid. A weak random potential reduces the scaling length
and favors the correlated motion.

PACS. 71.10.-w Theories and models for many-electron systems – 71.27.+a Strongly correlated electron
systems – 73.20.Qt Electron solids

1 Introduction

An important issue in quantum many body theory is to
know how one goes from independent particle motion to-
wards collective motion when one decreases the density ns

of electrons repelling each other via a U/r Coulomb repul-
sion. One can trap the electrons by a positive background
of charges (jellium model) unless one uses periodic bound-
ary conditions (2d torus geometry). Many studies [1–7]
assume a parabolic trap, its rotational invariance allowing
to decouple the motion of the center of mass from the rel-
ative motions. A parabolic confinement has the merit to
be realizable using semiconductor heterostructures [6,8]
for electrons or electromagnetic fields for cold ions. It has
however the disadvantage to yield a non uniform charge
density, so that the formation of the electron solid when
the confinement becomes weak results from a complicated
interplay between edge and bulk orderings [7,9]. This leads
us to study a system without edge, having the geometry of
a two dimensional torus, where the density is uniform. For
a continuous torus, the size of the corresponding Hilbert
space is infinite, making the use of a truncated basis un-
avoidable for a numerical study. A way to avoid such a
truncation is to take a lattice model (tight binding approx-
imation). Assuming that a large parallel magnetic field
yields full polarization of the electronic spins, we consider
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the ground state (GS) of two polarized electrons (spinless
fermions) in a square L×L lattice with periodic boundary
conditions (BCs), in order to give an answer to four ques-
tions. Is there a simple one parameter scaling theory of the
Fermi-Wigner crossover? How important are the finite size
corrections to this scaling theory? Does the lattice play an
important role? How those answers are modified when a
weak random potential is included?

The answers can be summarized as follows. In the
strong coupling limit, the Coulomb repulsion pushes the
spacing |r| between the two particle to take its maximum
value L/

√
2 and its fluctuations ∆r become of the or-

der of the lattice spacing a. This gives rise to a strongly
correlated lattice regime where analytical expansions in
powers of t/U are sufficient to describe the system. For
weaker couplings, the relative motion becomes more and
more delocalized and the lattice effects become irrelevant.
This gives rise to a universal regime characterized by a
scaling length L0 =

√
8π2(t/U). This length corresponds

to the system size for which the extra energy to add a sec-
ond particle in the system is the same in the Wigner limit
(t = 0) than in the Fermi limit (U = 0). L < L0 is the
Fermi limit, L > L0 is the Wigner limit and the Fermi-
Wigner crossover takes place when L = L0. In this uni-
versal regime, the relative fluctuations ∆r/〈r〉 = F (L/L0)
up to finite size corrections of order L−2. When the
site potentials have weak random fluctuations of order
W , there is still a regime where one parameter scaling



94 The European Physical Journal B

remains valid, ∆r/〈r〉 being characterized by a function
FW (L/LW ) which depends on W . Both ∆r/〈r〉 and the
scaling length LW become smaller, in agreement with the
general idea [10,11] that a weak disorder favors the corre-
lated motion.

2 Lattice model

We consider two polarized electrons with symmetric spin
wave functions and antisymmetric orbital wave functions
(spinless fermions), free to move on a L × L lattice with
periodic BCs, and interacting via a U/|r| repulsion. The
Hamiltonian reads

H = −t
∑
〈i,j〉

(
c†i cj + h.c.

)
+
∑

i

vini +
U

2

∑
i�=j

ninj

|rij | (1)

where i, j label the lattice sites, 〈i, j〉 means i nearest
neighbor to j, c†i , ci are the creation, annihilation op-
erators of a spinless fermion at the site i; ni = c†i ci is
the occupation number at the site labelled by the vector
i = (ix, iy). The vector rij = i − j is defined as the short-
est vector going from the site i to the site j in a square
lattice with periodic BCs. This means that rx ≤ L/2 and
ry ≤ L/2 if L is even, L → L − 1 if L is odd. Hence,
the pairwise interaction U/|r| exhibits a singularity on
the lines rx = L/2 and ry = L/2 and another one at
their crossing point rx = ry = L/2. t = �

2/(2ma2) is
the hopping term, a the lattice spacing, vi the site po-
tentials which are randomly distributed in the interval
[−W/2,W/2] and U = e2/(εa) the Coulomb interaction
between two fermions separated by a in a medium of di-
electric constant ε. When there is no disorder (W = 0),
k = (kx, ky) being the one particle momentum, it is more
convenient to write H using the Fourier transforms of the
creation and annihilation operators. One has the relations

cj =
1
L

∑
k

akeik·j, (2)

and

ak =
1
L

∑
j

cje−ik·j (3)

which yield

H =
∑
k

a†kak ε(k) +
∑

q,k1,k2

a†k2+qak2a
†
k1−qak1V (q) (4)

where

ε(k) = −2t (cos kx + cos ky) (5)

and

V (q) =
U

2L2

∑
r�=(0,0)

eiq·r

r
· (6)

Without disorder, the total momentum K = k1 +k2 is
conserved. The two particles states of different momenta
are not coupled, H becoming block diagonal, each block
corresponding to a given total momentum K.

The dimension of the two particle Hilbert space is
given by

NH =
M !

N !(M −N)!
=
M − 1

2
M (7)

for N = 2 and M = L2. When L is odd, this gives M
blocks of dimension (M − 1)/2. When L is even, we have
two different dimensions of the blocks.

NH = Mb1M1 +Mb2M2 (8)

where M1, M2 are the number of blocks with dimen-
sions Mb1 , Mb2 . Here,

M1 =
MMb2 −NH

Mb2 −Mb1

, M2 =
NH −MMb1

Mb2 −Mb1

(9)

and

Mb1 =
M

2
− 2, Mb2 =

M

2
· (10)

3 The Fermi limit

When U = W = 0 and with periodic BCs, the states are
NH plane wave Slater determinants

a†k1
a†k2

|0〉 = |k1k2〉 · (11)

kx = (2π/L)nx and ky = (2π/L)ny with

nx , ny =

{
0,±1, . . . ,±L−1

2 for L odd

0,±1, . . . ,± (L
2 − 1

)
, L

2 for L even.
(12)

The two particle wave functions

ψ (r1, r2) =
1√
2

∣∣∣∣∣∣
1
Leik1·r1 1

Leik1·r2

1
Leik2·r1 1

Leik2·r2

∣∣∣∣∣∣ (13)

become

ψ (r1, r2) =
(

1
L

eiK·R
)(

i
√

2
L

sink · r
)

(14)

after the change of coordinates:

K = k1 + k2, k =
1
2

(k2 − k1) (15)

R =
1
2

(r1 + r2) , r = r2 − r1. (16)

Without disorder, the motion of the center of mass and
the relative motion are separable:

ψ (r1, r2) = φ (R)χ (r) . (17)
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φ (R) is a plane wave of total momentum K which de-
scribes the propagation of the center of mass on the 2d
torus while χ (r) describes the relative motion. The mo-
ments 〈|r|m〉 of the inter-particle spacing r are given by:

〈|r|m〉 =
∫

|r|mp (r) dr (18)

where p(r) = |χ(r)|2 is the inter-particle spacing distribu-
tion.

The one particle energies ε(k) can be ordered by in-
creasing values. The one particle GS energy ε0 is not de-
generate, while the three next excitations ε1, ε2, ε3, are
four-fold degenerate; the fourth excitation ε4 is ten-fold
degenerate; etc.

ε0 = −4t

ε1 = −2t
(

1 + cos
2π
L

)

ε2 = −4t cos
2π
L

ε3 = −2t
(

1 + cos
4π
L

)

ε4 = −2t
(

cos
2π
L

+ cos
4π
L

)
·

· · · (19)

The two particle GS consists of one particle of energy
ε0 and of a second particle of energy ε1. Because ε1 has a
four-fold degeneracy, the two particle GS energy

E0 = ε0 + ε1 = −4t− 2t
(

1 + cos
2π
L

)
(20)

is also four-fold degenerate.
Hereafter, we study the two particle GS of momentum

K = (0, 2π/L). For k1 = (0, 0) and k2 =
(
0, 2π

L

)
, the GS

wave function is given by

ψ (r1, r2) =
(

1
L

ei 2π
L Ry

)(
−i

√
2
L

sin
πry
L

)
, (21)

which yields

p (rx, ry) =
2
L2

sin2 πry
L

(22)

〈|r|m〉 =
2
L2

∑
rx,ry �=0

(
r2x + r2y

)m/2
sin2 πry

L
· (23)

The corresponding inter-particle spacing distribution
p(rx, ry) is shown in Figure 1 for L = 60.

When one turns on the interaction U , the GS wave
function of total momentum K = ki+kj can be written as

|ψ0(U) 〉 =
∑
i<j

akikj (U) |ki kj 〉 δKki+kj
. (24)

Fig. 1. Inter-particle spacing distribution p(rx, ry) for L = 60,
U = 0 and K = (0, 2π/L).

Fig. 2. Inter-particle spacing distribution p(rx, ry) for L = 60,
U/t = 5 and K = (0, 2π/L).

The coefficients akikj (U) = 〈kikj |ψ0(U) 〉 can be numeri-
cally obtained if L is not too large, and the inter-particle
spacing distribution p(rx, ry) given by

∑
i<j,m<n a

∗
kikj

akmknδ
km+kn

ki+kj

[
ei(kn−kj)r − ei(kn−ki)r

]
L2

is shown in Figure 2 for L = 60, U/t = 5 and K =
(0, 2π/L). If one particle is located at the site (0, 0), one
can see how the interaction localizes the second one near
the site r = (L/2, L/2).

4 The correlated lattice limit

Before studying in more details the interaction induced lo-
calization of the inter-particle spacing r, let us consider the
other limit t/U → 0 where the two particle wave functions
|ψ〉 are more conveniently written using the operators c†i .
In this limit, the kinetic part

HK = −t
∑
〈ij〉

c†icj + h.c. (25)

of H is a small perturbation compared to the Coulomb
part and the levels can be expanded in powers of t/U .
When t/U → 0, at the order zero of a t/U expansion, the
Coulomb energy E0 of the GS wave function |ψ(0)

0 (K)〉
and the Coulomb energy E1 of the two degenerate first
excitations |ψ(0)

1 (K)〉 and |ψ(0)
2 (K)〉 are given by

E0 =
U

d0
=

√
2U
L

(26)
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and

E1 =
U

d1
=

U√(
L
2

)2
+
(

L
2 − 1

)2 (27)

respectively, if L is even. When L is odd, the energies E0

and E1 are given by the previous expressions, if L→ L−1.
Hereafter, we assume that L is even and we consider the
states of total momentum K = (0, 2π/L). a = (L/2, L/2).
b1 = (L/2 + 1, L/2) and b2 = (L/2, L/2+ 1) defining the
locations of three lattice sites which are as far as possible
from the site 0 = (0, 0), the zero order GS wave function

|ψ(0)
0 (K)〉 =

1√
2L

∑
j

expiK·j c†j c
†
j+a|0〉 (28)

is directly coupled at the order t/U to the two wave func-
tions of energy E1

|ψ(0)
1 (K)〉 =

1
L

∑
j

expiK·j c†j c
†
j+b1

|0〉 (29)

and

|ψ(0)
2 (K)〉 =

1
L

∑
j

expiK·j c†j c
†
j+b2

|0〉 · (30)

by

〈ψ(0)
1 (K) |HK |ψ(0)

0 (K)〉 = −2
√

2 t (31)

and

〈ψ(0)
2 (K) |HK |ψ(0)

0 (K)〉 = −√
2
(

1 + exp i
2π
L

)
t (32)

respectively. At the order t/U , the GS wave function is
given by

|ψ(1)
0 (K)〉
C2

= |ψ(0)
0 (K)〉 + |δψ(1)

0 (K)〉 (33)

where C−2 is a normalization constant and

|δψ(1)
0 (K)〉 =

2∑
α=1

〈ψ(0)
α (K)|HK |ψ(0)

0 (K)〉
E0 − E1

|ψ(0)
α (K)〉 ·

(34)

One gets

|δψ(1)
0 (K)〉 = A|ψ(0)

1 (K)〉 +B|ψ(0)
2 (K)〉 (35)

where

A = 2
√

2
d0d1

d0 − d1

(
t

U

)
(36)

B =
√

2
d0d1

d0 − d1

(
1 + exp

i2π
L

)(
t

U

)
(37)

Fig. 3. Relative fluctuation ur as a function of U/t for L = 20
and K = (0, 2π/L). The Log-Log plot shows the three regimes
characterizing the ground state. The three dashed lines corre-
spond to ur = 0.25, ur ∝ (t/U)0.31 and the t/U perturbative
behavior given by equation (40).

and

C−2 = 1 +
4d2

0d
2
1

(d0 − d1)2

(
3 + cos

2π
L

)(
t

U

)2

· (38)

for L even and K = (0, 2π/L). This yields for the fluctu-
ation ∆r =

√〈r2〉 − 〈r〉2 of the inter-particle spacing:

∆r =
t

U
L

√
[(L− 1)2 + 1]

(
3 + cos

2π
L

)
(39)

and for its relative fluctuation ur = ∆r/〈r〉

ur =
t

U

√
2[(L− 1)2 + 1]

(
3 + cos

2π
L

)
· (40)

This correlated lattice behavior is shown in Figure 3
for L = 20 when U/t > 1000.

5 The three regimes of coupling

The behavior of the relative fluctuation ur = ∆r/〈r〉
is shown in Figure 3 for L = 20 and K = (0, 2π/L).
The crossover from independent particle towards strongly
correlated motion in a finite size lattice exhibits three
regimes:

– A weak U Fermi regime where ur is large and almost
independent of U . The fluctuation ∆r is of the order of
the expectation value 〈r〉, r being broadly distributed.

– An intermediate correlated Wigner regime where ur

exhibits a weak (t/U)α decay, where α ≈ 0.31. ∆r
becomes small compared to 〈r〉, the distribution of r
becoming narrower.

– A large U strongly correlated lattice regime where ur

exhibits the strong t/U decay predicted by the pertur-
bative expansion (Eq. (40)), the distribution of r being
extremely narrow.
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The value U∗(L)/t characterizing the crossover be-
tween the intermediate Wigner regime and the strongly
correlated lattice regime is consistent with the condition
∆r < 1. When U ≈ U∗(L), the lattice strongly reduces
the degrees of freedom of the relative motion, and lattice
expansions in powers of t/U become valid. We study in
the next section the Fermi-Wigner crossover which occurs
before this strongly correlated lattice regime.

6 Scaling theory of the Fermi-Wigner
crossover

For U < U∗(L), we define the scale L0 associated to the
interaction strength U/t such that a dimensionless observ-
able as ur becomes a universal function of the dimension-
less ratio L/L0, up to certain finite size corrections which
we will estimate. The argument for defining the scaling
length L0 can be presented as follows. Let us consider the
system at U = 0 where the first particle occupies the state
ε0 = −4t. Due to Pauli principle, adding a second particle
requires an extra kinetic energy:

∆E(U = 0) = ε1 − ε0 = 2t(1 − cos(2π/L)). (41)

In the other limit t→ 0, adding a second particle requires
an extra Coulomb energy:

∆E(t = 0) =
U

d0
· (42)

The length L0 characterizes the scale at which
∆E(U = 0) coming from Pauli exclusion principle is equal
to ∆E(t = 0) coming from Coulomb repulsion. When L
is large enough, L0 can be approximated by:

L0 =
√

8π2

(
t

U

)
, (43)

but when L is small, L0 should be more precisely deter-
mined by solving the equation ∆E(U = 0) = ∆E(t = 0),
and without neglecting the even-odd effects in the defi-
nition of d0. For scales L < L0, the GS wave function
has mainly to minimize the kinetic energy while the mini-
mization of the Coulomb energy becomes more important
for the scales L > L0. The Fermi-Wigner crossover is ex-
pected at L/L0 = 1.

One assumes for the dimensionless ratio ur the usual
finite size scaling ansatz [12]:

ur(L,U, t) = F

(
L

L0

)
+ g(L), (44)

the finite size correction g(L) → 0 as L → ∞. g(L) can
be easily evaluated when U/t → 0 (L0 → ∞), the ansatz
becoming

ur(L,U = 0, t) = F (0) + g(L). (45)

Fig. 4. Relative fluctuation ur − g(L) where g(L) = 0.9/(L +
1)2 as a function of L/L0 ≈ UL/(

√
8π2t) for even L. The Log-

Log plot shows the universal scaling function F (L/L0) for U <
U∗(L), and the non universal lattice regime for U > U∗(L).
The filled circles approximately give the thresholds U∗(L).

Fig. 5. Circles: Interaction thresholds U∗(L) giving the end of
the universal scaling regime and the beggining of the strongly
correlated lattice regime, extracted from Figure 4. The dashed
line corresponds to the condition ∆r(U) = 2/3 where ∆r is
given by equation (39).

This is a problem without interaction where one can use
equation (23), for eventually obtaining F (0) = 0.2543 and

g(L) ≈
{

0.9/ (L+ 1)2 for L even

−0.4/ (L− 1)2 for L odd.
(46)

The finite size correction g(L) has a sign which depends
on the parity of L and disappears as the inverse of the
total number of lattice sites.

Figure 4 gives F (L/L0) = ur − g(L) for even values
of L. One can see the universal scaling behavior with a
Fermi Wigner crossover at L = L0 up to a value U∗(L)
denoted by the filled circles where scaling breaks down
and the correlated lattice regime begins. The behavior
of U∗(L) is shown in Figure 5, where one can see that
the values U∗(L) extracted from Figure 4 are precisely
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Fig. 6. Fermi-Wigner crossover for the relative fluctuation ur,
described by the universal scaling function F (L/L0) = ur −
g(L) in a Log-Log plot. Values calculated from even values
of L with the finite size correction g(L) = 0.9/(L + 1)2. The
solid lines correspond to F (x) = 0.2543 and F (x) ∝ x−0.31

respectively.

given by the condition ∆r ≈ 2/3, ∆r being given by equa-
tion (39). Below U∗(L), ur−g(L) is a one parameter func-
tion of L/L0 ∝ LU/t, and the lattice effects are irrelevant.
The lattice regime occurs only above a large interaction
U∗/t ∝ L2 when L is large.

For N spinless fermions on a L×L square lattice, the
Coulomb energy to Fermi energy ratio becomes [10]:

rs =
U

2t
1√
πν

(47)

for a density ν = N/L2. Taking N = 2, one gets
rs(N = 2) = π3/2(L/L0). The Fermi-Wigner crossover
taking place when L/L0 = 1 for N = 2 spinless fermions,
this yields a critical ratio rW

s (N = 2) = π3/2 smaller than
the critical ratio rs ≈ 37 given by Quantum Monte Carlo
studies [13,14] for the Wigner crystallization of a finite
density of particles in the continuous limit: to form a crys-
tal with many electrons requires a lower density than the
‘density’ necessary to form a correlated Wigner molecule,
with only two polarized electrons in an empty lattice. In
the strongly correlated lattice regime (U > U∗ ∝ L2), ur

becomes a function of Lt/U , and not of L/L0 ∝ rs ∝
LU/t. In this lattice regime, L/L0 or rs cease to be the
relevant parameters.

The Fermi-Wigner universal crossover is illustrated
with more details in Figure 6 where we have only taken
even values of L. One can see that the finite size correc-
tion g(L) = 0.9/(L + 1)2 allows us to plot all the values
ur − g(L) calculated for U < U∗(L) onto the universal
scaling curve F (L/L0) when L = 6, 10, . . . , 60. Figure 7
gives the same universal curve F (L/L0) for the odd values
of L, once the finite size correction g(L) = −0.4/(L+ 1)2
have been subtracted to ur. The universal function F (x)
is close to its value F (0) = 0.2543 when x ≤ 1 and behaves
as x−α with α ≈ 0.31 when x ≥ 1.

Fig. 7. Fermi-Wigner crossover for the relative fluctuation ur,
described by the universal scaling function F (L/L0) = ur −
g(L) in a Log-Log plot. Values calculated for odd values of L
with the finite size correction g(L) = −0.4/(L−1)2 . Same solid
lines as in Figure 6.

The value α ≈ 0.31 depends on the exact form of the
pairwise repulsion U/|r| around r = (L/2, L/2). Due to
our definition of the inter-particle spacing r, U(r) is non
analytic around r = (L/2, L/2), making the study a little
bit involved. If one modifies the pairwise repulsion such
that U(r) becomes analytic around (L/2, L/2), taking for
instance

U(r) =
U

L
π

√
sin2( rxπ

L ) + sin2( ryπ
L )

(48)

instead of U/|r|, one can show [15] that the equation for
the relative motion becomes identical to the single particle
motion in a 2d harmonic potential when U is large enough,
to eventually obtain a slightly different exponent α = 1/4
in the continuous limit (L → ∞). A complete discussion
about this issue will be given in reference [15].

7 Effects of a weak random substrate

We now study the effect of random site potentials vi upon
the Fermi-Wigner crossover. We restrict our study to the
limit of weak disorder, the values of W being large enough
to yield one particle diffusive dynamics in the non interact-
ing system, but too small to yield one particle Anderson
localization. In the presence of disorder, the momenta K
are not conserved, and we need to diagonalize the total
Hamiltonian H given by equation (1) in the site basis
c†ic

†
j |0〉. Moreover, the relative fluctuations ur are now ran-

dom variables, and the ensemble average values 〈ur〉 will
be considered.

Figure 8 shows for L = 14 the difference between
the ur obtained for W = 0 and the 〈ur〉 calculated for
1 ≤W ≤ 4. One can see that the disorder reduces the rel-
ative fluctuations 〈ur〉, shifts the Fermi-Wigner crossover
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Fig. 8. Ensemble average relative fluctuation 〈ur〉 as a function
of U/t for L = 14 and W = 0, 1, 2, 3, 4 in a Log-Log plot.

Fig. 9. Scaling function GW (L/LW ) + C for W = 2 and 6 ≤
L ≤ 14. An arbitrary constant C = 0.2 has been taken for the
Log-Log plot.

to weaker interactions, and reduces the exponent α char-
acteristic of the U−α decay for intermediate interactions.

For a weak value of W and small enough values of
U/t to avoid the correlated lattice regime, we assume the
generalized scaling ansatz:

〈ur(L,U, t,W )〉 = FW

(
L

LW (U, t,W )

)
+ gW (L). (49)

Since

〈ur(L,U = 0, t,W )〉 = FW (0) + gW (L), (50)

which implies that

GW = 〈ur(L,U, t,W )〉 − 〈ur(L,U = 0, t,W )〉 (51)

must only depend on the ratio L/LW . The scaling
length LW is defined in such a way that the Fermi-Wigner
crossover remains at L/LW = 1. As shown in Figure 9, all

Fig. 10. As a function of W , exponent α(W ) characterizing
the the scaling function GW (x) ∝ x−α(W ) when x > 1 (upper
figure) and reduction factor LW /L0 for the scaling length LW

(lower figure).

the data calculated for L = 8, 10, 12, 14 can be mapped
onto the same scaling curve GW (L/LW ) = FW (L/LW )−
FW (0). We just show the curve GW=2(L/LW ), the curves
obtained for W = 1, 2, 3, 4 being also consistent with
the ansatz (49) when U and L are varied in the same
range. GW (x) ≈ 0 for x < 1 while GW (x) ≈ x−α(W )

for x > 1, the exponent α(W ) being given in upper Fig-
ure 10. To obtain that the Fermi-Wigner crossover remains
at L/LW = 1, one needs to take the scaling lengths LW ,
the reduction factors LW /L0 being given in the lower Fig-
ure 10.

The reduction of the crossover scale LW by the random
potentials can be qualitatively explained if we revisit the
argument which has allowed us to define L0 without disor-
der: L = LW when the energies ∆EW which are necessary
for adding a second particle in the one particle system are
the same in the two limits U = 0 and t = 0. On one hand,
when U = 0, the first one particle excitation has a four-
fold degeneracy which is removed by disorder. This gives
a reduction of the energy cost 〈∆EW (U = 0)〉 necessary
in the Fermi limit. On the other hand, the energy cost
〈∆EW (t = 0)〉 necessary in the Coulomb limit remains
almost unchanged if W is weak. This gives a shift of the
Fermi-Wigner crossover to a lower scale LW < L0 in the
limit of a weak disorder. In Figure 11, we have plotted
as a function of L for W = 0 and W = 2 the disorder
averaged energies 〈∆EW (U = 0)〉 and 〈∆EW (t = 0)〉.
One can see indeed that 〈∆EW (U = 0)〉 is decreased by
the disorder, while 〈∆EW (t = 0)〉 remains essentially un-
changed. The curves cross at L = L0 ≈ 8.9 when W = 0
and L = LW ≈ 7.1 when W = 2. The obtained ratio
LW=2/L0 ≈ 0.8 is indeed smaller than 1, though some-
what below the value LW=2/L0 ≈ 0.9 given in Figure 10.

This quantitative disagreement may be due the distri-
butions of the considered random variables. We have con-
sidered only the ensemble average behaviors, which may
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Fig. 11. As a function of L, curves ∆E(U = 0, t = 1, W = 0)
(dashed line) and ∆E(U = 3, t = 0, W = 0) (long dashed line)
crossing at L = L0, and ensemble average curves 〈∆E(U =
0, t = 1, W = 2)〉 (dotted line) 〈∆E(U = 3, t = 0, W =
2)〉 (filled circle) crossing at L = LW . L0(t/U) ≈ 8.9 and
LW=2(t/U) ≈ 7.1.

not give the typical scaling behaviors, both for the rel-
ative fluctuations and for the energies. When U = 0, it
is indeed well known that the level spacing distributions
are not normally distributed, but depend on the nature of
the one particle dynamics. In the bulk of the spectrum,
one has typically a Poisson distribution if the dynamics
is ballistic and non chaotic, a Wigner-Dyson distribution
if the dynamics is diffusive, a Poisson distribution again
when one has Anderson localization. Near the one particle
spectrum edges, the distribution can differ from the bulk
distribution. This is why an argument based on disorder
average quantities can only qualitatively give the disorder
induced reduction of the scaling length.

In conclusion, let us underline that an Hamiltonian
with three parameters, U , t and W , has many different
limits. This section is restricted to the study of the com-
petition between the interaction U and the kinetic energy
t when the disorder W remains a weak perturbation, in
the limit L < L1, L1 denoting the one particle localization
length. In this limit, we have shown that 〈ur〉 is still
given by a function FW of the dimensionless ratio L/LW

and that the scaling length LW decreases as a function
of W . This is in agreement with the general idea that a

random substrate favors charge crystallization [10,11], the
correlated motion persisting to larger densities (weaker
values of rs). But for larger W , the issue is to describe the
crossover from a Fermi glass of Anderson localized states
towards a Wigner glass. In this strongly disordered limit,
the ur will have large sample to sample fluctuations, and
one cannot rule out that the average 〈ur〉 will finish to
be meaningless or that the one parameter scaling func-
tion FW (L/LW ) could become a more complicated two
parameter scaling function of L/L0 and L/L1. The study
of those glassy behaviors is left for another study.
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